Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Mass Spectrom ; 59(5): e5021, 2024 May.
Article En | MEDLINE | ID: mdl-38605451

Trapped ion mobility spectrometry-time-of-flight mass spectrometry (TIMS-TOFMS) has emerged as a tool to study protein conformational states. In TIMS, gas-phase ions are guided across the IM stages by applying direct current (DC) potentials (D1-6), which, however, might induce changes in protein structures through collisional activation. To define conditions for native protein analysis, we evaluated the influence of these DC potentials using the metalloenzyme bovine carbonic anhydrase (BCA) as primary test compound. The variation of DC potentials did not change BCA-ion charge and heme content but affected (relative) charge-state intensities and adduct retention. Constructed extracted-ion mobilograms and corresponding collisional cross-section (CCS) profiles gave useful insights in (alterations of) protein conformational state. For BCA, the D3 and D6 potential (which are applied between the deflection transfer and funnel 1 [F1] and the accumulation exit and the start of the ramp, respectively) had most profound effects, showing multimodal CCS distributions at higher potentials indicating gradual unfolding. The other DC potentials only marginally altered the CCS profiles of BCA. To allow for more general conclusions, five additional proteins of diverse molecular weight and conformational stability were analyzed, and for the main protein charge states, CCS profiles were constructed. Principal component analysis (PCA) of the obtained data showed that D1 and D3 exhibit the highest degree of correlation with the ratio of folded and unfolded protein (F/U) as extracted from the mobilograms obtained per set D potential. The correlation of D6 with F/U and protein charge were similar, and D2, D4, and D5 showed an inverse correlation with F/U but were correlated with protein charge. Although DC boundary values for induced conformational changes appeared protein dependent, a set of DC values could be determined, which assured native analysis of most proteins.


Ion Mobility Spectrometry , Proteins , Animals , Cattle , Ion Mobility Spectrometry/methods , Mass Spectrometry/methods , Protein Conformation , Proteins/chemistry , Ions
2.
Anal Chim Acta ; 1264: 341276, 2023 Jul 11.
Article En | MEDLINE | ID: mdl-37230720

New psychoactive substances (NPS) are synthetic derivatives of illicit drugs designed to mimic their psychoactive effects. NPS are typically not controlled under drug acts or their legal status depends on their molecular structure. Discriminating isomeric forms of NPS is therefore crucial for forensic laboratories. In this study, a trapped ion mobility spectrometry time-of-flight mass spectrometry (TIMS-TOFMS) approach was developed for the identification of ring-positional isomers of synthetic cathinones, a class of compounds representing two-third of all NPS seized in Europe in 2020. The optimized workflow features narrow ion-trapping regions, mobility calibration by internal reference, and a dedicated data-analysis tool, allowing for accurate relative ion-mobility assessment and high-confidence isomer identification. Ortho-, meta- and para-isomers of methylmethcathinone (MMC) and bicyclic ring isomers of methylone were assigned based on their specific ion mobilities within 5 min, including sample preparation and data analysis. The resolution of two distinct protomers per cathinone isomer added to the confidence in identification. The developed approach was successfully applied to the unambiguous assignment of MMC isomers in confiscated street samples. These findings demonstrate the potential of TIMS-TOFMS for forensic case work requiring fast and highly-confident assignment cathinone-drug isomers in confiscated samples.


Alkaloids , Ion Mobility Spectrometry , Mass Spectrometry , Alkaloids/analysis , Isomerism
3.
J Am Soc Mass Spectrom ; 32(6): 1498-1507, 2021 Jun 02.
Article En | MEDLINE | ID: mdl-33988368

Trapped ion-mobility spectrometry combined with quadrupole time-of-flight mass spectrometry (TIMS-QTOFMS) was evaluated as a tool for resolving linear and branched isomeric polyester oligomers. Solutions of polyester samples were infused directly into the ion source employing electrospray ionization (ESI). TIMS-MS provides both mobility and m/z data on the formed ions, allowing construction of extracted-ion mobilograms (EIMs). EIMs of polyester molecules showed multimodal patterns, indicating conformational differences among isomers. Subsequent TIMS-MS/MS experiments indicated mobility differences to be caused by (degree of) branching. These assignments were supported by liquid chromatography-TIMS-MS/MS analysis, confirming that direct TIMS-MS provided fast (500 ms/scan) distinction between linear and branched small oligomers. Observing larger oligomers (up to 3000 Da) using TIMS required additional molecular charging to ensure ion entrapment within the mobility window. Molecular supercharging was achieved using m-nitrobenzyl alcohol (NBA). The additional charges on the oligomer structures enhanced mobility separation of isomeric species but also added to the complexity of the obtained fragmentation mass spectra. This complexity could be partly reduced by post-TIMS analyte-decharging applying collision-induced dissociation (CID) prior to Q1 with subsequent isolation of the singly charged ions for further fragmentation. The as-obtained EIM profiles were still quite complex as larger molecules possess more possible structural isomers. Nevertheless, distinguishing between linear and symmetrically branched oligomers was possible based on measured differences in collisional cross sections (CCSs). The established TIMS-QTOFMS approach reliably allows branching information on isomeric polyester molecules up to 3000 Da to be obtained in less than 1 min analysis time.

4.
Anal Chem ; 92(6): 4292-4300, 2020 03 17.
Article En | MEDLINE | ID: mdl-32107919

Size-exclusion chromatography employing aqueous mobile phases with volatile salts at neutral pH combined with electrospray-ionization mass spectrometry (SEC-ESI-MS) is a useful tool to study proteins in their native state. However, whether the applied eluent conditions actually prevent protein-stationary phase interactions, and/or protein denaturation, often is not assessed. In this study, the effects of volatile mobile phase additives on SEC retention and ESI of proteins were thoroughly investigated. Myoglobin was used as the main model protein, and eluents of varying ionic strength and pH were applied. The degree of interaction between protein and stationary phase was evaluated by calculating the SEC distribution coefficient. Protein-ion charge state distributions obtained during offline and online native ESI-MS were used to monitor alterations in protein structure. Interestingly, most of the supposedly mild eluent compositions induced nonideal SEC behavior and/or protein unfolding. SEC experiments revealed that the nature, ionic strength, and pH of the eluent affected protein retention. Protein-stationary phase interactions were effectively avoided using ammonium acetate at ionic strengths above 0.1 M. Direct-infusion ESI-MS showed that the tested volatile eluent salts seem to follow the Hofmeister series: no denaturation was induced using ammonium acetate (kosmotropic), whereas ammonium formate and bicarbonate (both chaotropic) caused structural changes. Using a mobile phase of 0.2 M ammonium acetate (pH 6.9), several proteins (i.e., myoglobin, carbonic anhydrase, and cytochrome c) could be analyzed by SEC-ESI-MS using different column chemistries without compromising their native state. Overall, with SEC-ESI-MS, the effect of nonspecific interactions between protein and stationary phase on the protein structure can be studied, even revealing gradual structural differences along a peak.


Chromatography, Gel , Myoglobin/analysis , Animals , Heart , Horses , Hydrogen-Ion Concentration , Protein Denaturation , Spectrometry, Mass, Electrospray Ionization
...